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THE QUEST FOR UNIMOLECULAR
RECTIFICATION FROM OXFORD TO WALTHAM

TO EXETER TO TUSCALOOSA

Robert M. Metzger

Laboratory for Molecular Electronics, Department of Chemistry,
University of Alabama, Tuscaloosa, AL 35487-0336

Dedicated to the memory of Professor Sukant K. Tripathy, 
who did so much and died so young.

ABSTRACT

A unimolecular electronic device should perform active electronic functions
by exploiting the energy levels, or conformations, of a singlemolecule, or a
very few molecules, and should be addressable electrically by macroscopic
electrodes. We found unimolecular rectification in a molecule, γ-hexade-
cylquinolinium tricyanoquinomethanide, 4, in which the ground state is
Zwitterionic: D+-π-A-, while the first excited state is undissociated: D0-π-A0.
This 2.3 nm long unimolecular device, measured three years ago between Al
electrodes and now between Au electrodes, confirms a 1974 proposal by
Aviram and Ratner. 

HISTORICAL INTRODUCTION

Unimolecular electronics started with a seminal paper by Arieh Aviram and
Mark A. Ratner in 1974 [1]. This paper was born during the frenzy of metallic
conductivity [2] and possible high-temperature superconductivity in single crys-
tals of TTF TCNQ (1) [3] (later dismissed [4], and found, instead, by Klaus

J. MACROMOL. SCI.—PURE APPL. CHEM., A38(12), 1499–1517 (2001)

1499

Copyright © 2001 by Marcel Dekker, Inc. www.dekker.com

*Corresponding author.  Fax: 205-348-9104; E-mail: rmetzger@bama.ua.edu

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
0
4
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



Bechgaard and Denis Jérome and co-workers, at much lower temperatures in other
ion-radical salts, the first of which was TMTSF2PF6, 2 [5]). The proposal of
Aviram and Ratner was that a single molecule 3, which we can style D-s-A, would
rectify because its covalently bonded components are a good one-electron donor,
D, like TTF, with a relatively low ionization potential, a “sigma” bridge s of sp3-
hybrizied saturated carbon atoms, and a good one-electron acceptor, A, like
TCNQ, with a relatively large electron affinity. The synthesis of molecule 3 was
not undertaken, nor were the considerable problems of device assembly consid-
ered [1]. Intellectually, this seminal paper responded to the 1959 challenge by
Richard P. Feynman that there was “plenty of room at the bottom”, i.e., that infor-
mation storage had not yet reached atomic or molecular dimensions [6].

This review will focus on the practical realization of unimolecular rectifica-
tion, which (1) started with the Organic Rectifier Project, led by the present author
and Charles A. Panetta at the University of Mississippi (Oxford, MS, 1981-1992).
[7-41], This project was (2) aided by a collaboration with Dr. Sukant K. Tripathy,
then at General Telephone and Electronics (GTE) (Waltham, MA, 1986) [10], (3)
and by a funded collaboration between GTE and Nippon Telephone and Telegraph
(1987). The quest continued (4) in a collaboration between Daniel J. Sandman of
GTE and Professor John Roy Sambles of the University of Exeter (Exeter, UK,
1987-1989) [88-90], (5) in a further collaboration between Sambles, and Professor
Geoffrey J. Ashwell of Cranfield University (Cranfield, UK, 1989-1993) [82, 91,
92]. Finally,  (6) a team consisting of the present author and Professor Michael P.
Cava of the University of Alabama (Tuscaloosa, AL, 1995-present) [42- 64] con-
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firmed beyond any reasonable doubt that molecular rectification is a reality, for
molecule 4. In the meantime, two other rectifiers have appeared [65, 66].

Before going into details, a brief history of molecular electronics should be
given. The field of molecular electronics, and bio-electronics, received intense, if
premature, attention in the early 1980’s, with three conferences organized by
Forrest L. Carter[67-69]. Many molecular processes could potentially lead to elec-
tronic applications: the emphasis should be placed on the dangerous adverb
“potentially”: one must actually reach out and touch (measure) a molecule effec-
tively to utilize its electronic properties, and this has rarely been done. The term
“molecular electronics” was in part co-opted by the growing field of conducting
organic and metal-organic crystals, and even by researchers of conducting poly-
mers, which was initiated in 1977 by the Nobel-prize winning paper by Hideki
Shirakawa, Alan MacDiarmid, and Alan J. Heeger [70]. The term “unimolecular
electronics” came to signify the use of the electronic properties of a single mole-
cule or small cluster of molecules [28].  

In the 1990’s, some seminal advances in unimolecular electronics have been
made: 

1. The electrical resistance of a single 1,4-benzenedithiol, bonded cova-
lently as the dithiolate to two Au electrodes, was measured by the group
headed by Mark A. Reed [71].

2. The quantum of electrical resistance (12 kΩ) was measured by Walt de
Herr and his group at room temperature, when a carbon nanotube, glued
to a conducting AFM tip, was lowered into liquid Hg [72]. 

3. The Aviram-Ratner mechanism [1], slightly modified, was confirmed in
both macroscopic and nanoscopic conductivity measurements through a
monolayer of γ-hexadecyl-quinolinium tricyanoquinomethanide, 4: this
is the first proven two-terminal molecular device [42].

Why does unimolecular electronics hold promise for electronic technology?
In electronic integrated circuits (IC), the drive to achieve faster computers is a
drive to reduce the “design rule”, the closest distance between adjacent electronic
components in the IC. The design rule sets the clock cycle, which is the time
required for an electron to travel between the furthest components on the chip:
shorter cycles mean faster computing. These design rules have now been reduced
to about 180 nm commercially. If photolithography is used, the design rules are
limited, by Rayleigh’s criterion [73], to about one-half the wavelength of light
used. To achieve design rules below 120 nm, UV photolithography must be
replaced by X-ray or electron beam lithography, with much higher error rates. At
50 nm, an even more drastic limit appears: one can no longer “dope” Si uniformly.
It is thought that this 50 nm “silicon wall” will be reached in a few years [74].

At the heart of all computers lie rectifiers and transistors. The first rectifiers,
based on group-IV (or 14) semiconductors like ultra-pure Ge or Si, were pn junc-
tion rectifiers, where a region of p-doped Ge or Si was accosted to a region of n-
doped Ge or Si. “doped” material. To make a “p-doped” crystal, one dopes the
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group IV matrix interstitially or subtitutionally with group III (or 13: Al, Ga, In,
etc.), thus creating a semiconductor with an excess of “holes”. To create an n-
doped region, one dopes a group IV crystal with group V (or 15: P, As, etc.), creat-
ing a region that has an excess of electron carriers. 

A connection must be made between the p,n terminology of solid state
physics and with the organic chemical terminology of an electron donor D (a mol-
ecule that can be oxidized to the radical cation D+ with relative ease), and of an
electron acceptor A (a molecule which can easily be reduced, to the radical anion
A- fairly easily). The n-region has an excess of electrons, or is an electron donor
(D) region; a p-region has an excess of holes, or is an electron acceptor (A) region.
Thus, “D” corresponds to “n”, and “A” corresponds to “p”. 

By accosting a µm-thick film of organic D molecules to a µm-thick film of
an organic A molecules, one gets a DA rectifier (one-way conductor) of electrical
current, equivalent to an inorganic pn rectifier [75]. In the 1960’s, and particularly
in the early 1970’s, organic charge-transfer crystals and conducting polymers
yielded organic equivalents of inorganic electronic systems: semiconductors, met-
als, superconductors, batteries, etc. [76]. 

A persistent view has been that unimolecular, or “oligomolecular” [28, 38],
or “molecular-scale” [77] electronics have a very bright future, just as the new
millennium begins. Molecules, with their 1 to 3 nm sizes, should step in where
inorganic chemistry may fail. Thus, unimolecular electronics will come to the res-
cue: they will finally find a central role in electronic technology. 

The Aviram-Ratner Ansatz of Unimolecular Rectification

The Aviram-Ratner proposal [1] is based on a single molecule acting as a pn
junction. The highest occupied molecular orbital, or HOMO, of the D part is close
to the “vacuum” state, and in resonance, possibly at a small applied bias V, with
the Fermi level of one metallic contact (say EF1), while the LUMO of the A part is
relatively low, and in resonance with the Fermi level of the other contact, EF2; the
electron then tunnels from the high-lying LUMO of A through the σ “bridge” to
the low-lying HOMO of D. The device is asymmetric, because the HOMO of A is
relatively low, and the LUMO of A is relatively high (Figure 1). 

The “Gedankenmolekül” D-σ-A, when assembled between two metal elec-
trodes M1 and M2, should form the rectifier M1|D-σ-A|M2, with easy electron
transfer from M2 to M1 because of the “down-hill” tunneling from the excited
state D+-σ-A- to the ground state D0-σ-A0. Since the working thickness is about 2
or 3 nm, this should be the world’s smallest electronic device. There are several
criteria for the rational assembly of such D-σ-A systems:

1. ID for the D end must be small, and match as closely as possible the
work function φ1 of the metal layer M1 (Figure 1), but if ID is too small,
the molecule would oxidize in air.
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2. AA for the A end must be as large as possible, and match if possible the
work function φ2 of the metal layer M2. Figure 1 shows that this is not
easy. 

3. The coupling reaction to form the bridge σ between D and A must be the
last step of the synthesis, and must prevail over forming an intermolecu-
lar D+A- salt. 

4. Efficient assembly as a monolayer on a metal electrode. The Langmuir-
Blodgett (LB) technique transfers a physisorbed monolayer onto a solid
substrate, but the molecules often need a long aliphatic chain, which
may retard electron flow. Other choices are self-assembled films bridg-
ing two electrodes, e.g., a bithiol attached to two Au electrodes, or a dis-
ilane, bonded to two Si electrodes. Efficient contact to electrodes is cru-
cial.

UNIMOLECULAR RECTIFICATION 1503

Figure 1. Energy levels of interest to unimolecular rectifiers: HOMOs and ionization potentials ID
of some organic one-electron donors D (left), work functions f of some metals (middle), LUMOs
and electron affinities AA of some organic one-electron acceptors A (right).
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Multilayer Lb Organic Rectifiers and Lb Photodiode

LB multilayer rectifiers have been made by doping arachidic acids with
either electron donors (for a few monolayers of D) or nothing or electron accep-
tors (a few monolayers of A) by Kuhn and coworkers [78], and also by Sugi and
co-workers [79]. Roth, von Klitzing, and co-workers used pure donor layers and
pure acceptor layers [80]. However, these results could not be extended down to
the monolayer level. Fujihira and co-workers discovered an LB monolayer photo-
diode, which may be the first unimolecular electronic device [81].

Potential Unimolecular Rectifiers

Collaborations of the present author with Professor C. A. Panetta at the
University of Mississippi in Oxford, MS and Professor M. P. Cava at the
University of Alabama in Tuscaloosa, AL netted several candidates for unimolecu-
lar rectification, i.e. D-σ-A and D+-π-A- molecules designed to form physisorbed
LB films [11, 8, 27, 30, 34, 40, 48, 55, 56, 59. Some of these are molecules 4 and
11-19. Molecule 4 is the first confirmed unimolecular rectifier [42].

The various D-σ-A molecules that formed insoluble Pockels-Langmuir (PL)
films [22] at the air-water interface and can be mostly transferred as LB films
onto solid substrates were the carbamates 11-15, and triptycenequinone linked to
TTF derivatives 16 and 17. The D+-π-A-Zwitterions were 4 [82], which formed a
rectifier, and its benzochalcogenazolium analogs 18 and 19, which did not [54].
The monofunctionalized strong acceptors BHTCNQ and HETCNQ could only be
produced in low yields. The very interesting strong donor-strong acceptor TTF-C-
BHTCNQ, 11, was difficult to purify [8]. The strongest films (highest collapse
pressure) were obtained with 12b [21]. As predicted, the triptycenequinone (weak
A) in 16 and 17 could not be converted to triptycene-dicyanoquinodiimine (strong
A) as the last synthetic step [44].

Initial Rectification Reports

The first rectification attempt was macroscopic, in a collaboration between
this author, Panetta, and Dr. S. K. Tripathy at GTE Laboratories, Waltham, MA
[10]. It failed, as did the next attempt in Tuscaloosa [21]. Nanoscopic STM exper-
iments, in collaboration with Dr. M. Pomerantz of IBM Watson Research
Laboratory Yorktown Heights, NY [22, 23], using molecules 12a and 12b, failed,
despite some initial excitement. Other investigators reported asymmetric current-
voltage (I-V) curves in STM experiments on Cu tetraazaporphyrin bonded to
carboxylated HOPG [83], an alkylated hexabenzocoronene [84] and an oligo-
phenylethynyl)-benzenethiol [85]. Electrochemical rectification at a monolayer-
modified electrode was also reported [86, 87]. 
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Rectification in Pt | LB FILM | Mg | Ag Sandwiches

Funds received by GTE from NTT first supported the work of Panetta, the
present author, and Tripathy, but, after the departure of Dr. Tripathy for what is
now the University of Massachusetts at Lowell, GTE management diverted those
funds to support Dr. D. J. Sandman of GTE, who in turn collaborated with
Professor J. R. Sambles of Exeter University. Sandman and Sambles and co-work-
ers found that an LB multilayer of DDOP-C-BHTCNQ, 12a, sandwiched between
Pt and Mg electrodes, behaved as a rectifying LB film [88]: they succeeded in
making macroscopic defect-free LB multilayers, and depositing atop the organic
layer a metal film of magnesium (shadowed with Ag) without shorting the device.
However, 12a does not contain a strong donor moiety, i.e., ID is probably too large
for an Aviram-Ratner rectifier. The observed rectifying behavior of 12a was later
reinterpreted to be due, not to molecular rectification, but to Schottky barrier for-
mation between Mg and TCNQ, i.e. to the formation of a salt, either Mg++TCNQ--

or Mg++(TCNQ-)2, at the metal-organic interface [89, 90]. 
Sambles, collaborating with Professor G. J. Ashwell of Cranfield University,

also found asymmetries in an LB multilayer of the ground state Zwitterion
C16H33Q-3CNQ, 4, sandwiched between Pt and Mg electrodes [82]; there was
also a slight I-V asymmetry for an LB monolayer of 4 [82]. To partially alleviate
doubts about a similar possible Schottky barrier, an insulating LB layer of ω-tri-
cosenoic acid was next put between 4 and the electrodes; the I-V asymmetry per-
sisted [91, 92]. It was thus claimed that molecular rectification had been observed,
albeit between asymmetric metal electrodes [91]. 

Rectification IN Al | Al2O3 | LB Monolayer | Al2O3 | Al | Sandwich

A very thorough repetition and major amplification of Sambles’ pioneering
work on C16H33Q-3CNQ, 4 was carried out [41, 42, 46, 48-50, 52, 53]. We review
first the general physical and chemical properties of 4. The synthesis of 4 was
vastly improved [42]. Cyclic voltammetry reveals that 4 is a weak reversible one-
electron acceptor, with a reduction half-wave potential (-0.513 V vs. SCE in
CH2Cl2) close to that of p-benzoquinone; the second reduction and the first oxida-
tion of 4 are electrochemically irreversible [42]. If one holds the electrochemical
potential at the first reduction potential, and measures the electron paramagnetic
resonance spectrum, the spin densities of the negative ion radical 4- are mostly
localized on the 3CNQ ring [50]; therefore, the LUMO of 4 is mostly localized on
the 3CNQ moiety. The dipole moment of 4 in CH2Cl2 solution is 43 ± 8 Debyes,
as befits a Zwitterion with a 10.5 Å separation between the positive charge (on the
quinolinium N) and the negative charge (on the dicyanomethylene bridge) [42].
The intense blue or green color of a solution of 4 (depending on solvent) disap-
pears at the first trace of acid, but is recovered if the solution is exposed to ammo-
nia vapor. This blue or green absorption, probably due to an intervalence transition
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(IVT) band or intramolecular charge-transfer transition, is narrow, intense, and
hypsochromic [42, 50]: this peak shifts from λmax = 838 nm in CHCl3 (least polar
solvent) to λmax = 711 nm in CH3CN (most polar solvent).  There are two fluores-
cence emissions, one in the visible region (corresponding to UV absorption
bands), the other in the near-infrared region [50]. The excited-state dipole moment
is calculated at between 3 and 9 Debyes [50]. The IVT transition is probably to an
excited singlet state, rather than to a biradical state, and may not involve a large
change in the torsion angle θ (shown in structure 4), i.e., it is probably not of the
twisted internal charge transfer (TICT) type.

Although 4 is not a strong-donor-strong acceptor molecule, it has a spectro-
scopically allowed transition between a ground state with a high dipole moment
and an excited state with low dipole moment. In contrast, in molecule 18a the loss
of vibronic structure, as the dielectric constant of the solvent increases, masks any
solvatochromic shift in the absorbance maximum [54]: this lack of strong solva-
tochromism may help explain why LB films of 18 or 19 do not rectify [54].
Simple semiempirical MO calculations (AM1, PM3) do not yield a large ground-
state dipole moment for 4 [42], unless θ � 90° [93]. Larger dipole moments are
obtained in LDA calculations [57]. There is no evidence of a proposed TICT tran-
sition in 4 due to a large internal rotation [93]: the 1H NMR of the H bonded to the
ring carbon attached to the quinolinium N atom shows a large chemical shift (rel-
ative to what is expected from neutral quinoline) due to the zwitterionic ground
state [42]; there is no change in the NMR spectrum as a function of temperature
[50]. Evidently, 4 has some non-zero twist angle θ between the quinolinium ring
and the phenyl ring, due to a steric hindrance, which guarantees that the ground
state is not that of a cyanine dye (where the zwitterion state D+-π-A- and the
undissociated (“neutral”) state D0-π-A0 would be degenerate), but rather that of a
Zwitterion. 4 forms multiply twinned crystals, whose unit cell could not be
indexed [42]. However, the crystal structure of a related compound, picolyltri-
cyanoquino-dimethan, or picolinium tricyanoquinodimethanide, 20, exhibits a
twist angle θ = 30° (dihedral angle between the pyridinium ring and the phenyl
ring of 3CNQ) [94]. 

When left in air and intense sunlight for weeks, a solution of 4 can discolor,
by some unknown mechanism. Most manipulations of 4 were thereafter carried
out with minimum exposure to light.  4 forms PL films at the air-water interface;
by using a darkened room, a collapse area of 50 Å2 at a collapse pressure of 34
mN m-1 was seen [42, 41]. The monolayer thickness (X-ray diffraction, ellipsom-
etry) is 23 Å, which means that this 30 Å long molecule is inclined by about 45° to
the film normal [42]. Z-type multilayers form on Al, as depicted in Figure 2(b). A
grazing-angle Fourier transform infrared spectrum of a monolayer of 4 on Al
shows two CN peaks at 2139 and 2175 cm-1 [42]. The X-ray photoelectron spec-
trum of a multilayer shows three N 1s peaks; the valence band onset is at -7.8 eV
vs. vacuum, close to the calculated (PM3) HOMO at -7.8 eV [50]. The intense
IVT band is at λmax = 565 nm in the LB monolayer [50] and also in the LB multi-
layer [42]. 
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The rectification work was performed both on macroscopic Al | LB film | Al
sandwiches, and by nanoscopic STM [42]. Sambles found that Mg perturbs a
physisorbed LB film the least. We decided to use Al on both sides of the LB film,
but cryocooled to 77 K the glass | Al | LB film assembly, to minimize the thermal
load on the LB film as the Al pad electrode is deposited from the vapor phase
[42]. The LB films were thoroughly dried, to prevent any spurious effect due to
moisture (which has a large effect on the electrical characteristics of Y-type cen-
trosymmetric arachidic acid multilayers) [42]. A drop of Ga/In eutectic was used
to make contact with Au wire electrodes, as shown in Figure 2. Asymmetric I-V
curves were seen in a 4-monolayer Z-type LB film, as well as in a 4-monolayer
film with a Mg electrode between the organic layer and the top Al pad [42], and
even for a single monolayer (Figure 3) [42]. In a control experiment, no I-V asym-
metry was seen for Y-type multilayers of arachidic acid, after careful sample dry-
ing [42]. Rectification for 4 was also seen, as a function of temperature, between
370 K and 105 K [52]. The maximum measured rectification ratio (at 1.5 V, Figure
3) was 26:1. However, if one cycles the measurement, the rectification ratio for 4
decreases over time: as the monolayer feels the immense electric fields (up to 6.5
MV cm-1), the physisorbed molecules probably “flip” between the Al pads [42].
The current measured amounts to about 0.33 electrons per molecule per second
[42]. Of course, not all Al | monolayer | Al “pads” rectify. After one discards the
shorted junctions, or the junctions that short during the experiment, there are still
several pads which exhibit either symmetrical I-V curves, or curves which “rectify

1508 METZGER

Figure 2. Orientation of the LB monolayer: (a) or multilayer; (b) of 4 on a glass, quartz, or Si sub-
strate. The electrode (+) for positive bias, and the direction of “easy” electron flow for V > 0 are
marked. From Reference [42].
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the wrong way”; these “aberrant” junctions show lower currents, and a character-
istically different dependence on voltage [53]. The direction of the current for for-
ward bias, shown in Figure 2, indicates that the negative charges are “pushed” by
the polarity of the electrode from the dicyanomethylene end, through the bridge,
to the quinolinium end of the molecule. The Aviram-Ratner mechanism for D-σ-A
molecules considered an undissociated ground state D0-σ-A0 and a Zwitterionic
excited state D+-σ-A-; this mechanism can be trivially modified and inverted for
the case where the ground state is mostly zwitterionic (D+-π-A-), and the excited
state is mostly undissociated (D0-π-A0)17.

The rectification was also verified for a 15-layer film of 4 on HOPG by
STM [41], [42], and a small I-V asymmetry was even seen for monolayer of 4 on
HOPG [42], but there is low adhesion of that first monolayer on HOPG. 

The Aviram-Ratner mechanism [1] for unimolecular rectification used an
undissociated ground state D0-σ-A0 and a relatively low-lying Zwitterionic excited
state D+-σ-A-. In the initial conception, this excited state could be a biradical [1],
i.e., a state where D is oxidized and A is reduced. This is necessary if the length of
the σ bridge makes the intramolecular charge transfer transition moment very small.

However, when there is appreciable intramolecular mixing of states, or an
observable intervalence transition (IVT), then a biradical D+-σ-A- state is proba-
bly not necessary, provided that the change in dipole moment upon excitation is
reversible: then D+-σ-A- could also be an excited singlet state. If the ground state
is zwitterionic D+-π-A-, and the excited state is undissociated D0-π-A0, then the
Aviram-Ratner mechanism can work…”backwards” [42]: the direction of rectifi-
cation, shown in Figure 2, agrees with this mechanism. 

UNIMOLECULAR RECTIFICATION 1509

Figure 3. Rectification at 297 K through a single 2.3 nm thick monolayer of 4 sandwiched
between Al electrodes (top Al pad area 4.5 mm2, thickness 100 nm), using, as shown in Figure 2(a),
Ga/In eutectic and Au wires. Plot of the DC current I versus the DC applied voltage V. From
Reference [42].
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Thus, the Aviram-Ratner Ansatz was verified, using either Al electrodes on
both sides of a monolayer, or an STM [42, 48]. A 2.3 nm thick unimolecular
device is now a reality. However, critics could still point at the oxide covering at
least part of the Al electrodes (on both sides of the monolayer), and may wonder
whether the oxide had any effect, i.e., presenting a barrier to conduction, and
maybe also acting as an additional rectifier in series with the organic monolayer. 

These doubts were very recently put to rest [64]. An experiment with “cold
gold” gave a dramatic confirmation of unimolecular rectification: a monolayer of
4, deposited atop an Au electrode, [64], was then covered by Au atoms pre-cooled
to room temperature with a low pressure of Ar gas (following recent work by
Professor J. R. Sambles). The thermalized Au atoms, cooled by scattering off sev-
eral Ar atoms, ensures that the monolayer is not heated or destroyed by hot Au
atom bombardment. Further, the direct path from Au source to target is blocked
off by baffles, so radiant heating of the monolayer target is minimized. Finally, the
target is cryocooled to 77 K with an external supply of liquid nitrogen (this last
precaution was also used for the Al work). The result is shown in Figure 4: the
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Figure 4. Rectification at room temperature [plot of DC current I versus DC applied voltage V]
for a single 2.3 nm thick LB monolayer of 4, sandwiched between Au electrodes (top Au pad area
0.283 mm2, thickness 18 nm). Cycle 1: solid line and open circles: rectification ratio at 2.2 V is
11.9; nominal resistance 2945 W. Cycle 2: dashed line and squares. Device shorted in third cycle.
From Reference [64]. 
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same rectification phenomena occur as with Al electrodes (the rectification ratio
decreases upon cycling). Another run (not shown here) with a rectification ratio of
only 5.39, had a forward current of 4.08 mA across a pad area of 0.283 mm2, cor-
responding to a forward current of 4.5 × 104 electrons molecule-1 s-1 [64], a
100,000-fold improvement on the forward current seen with Al electrodes. Thus,
rectification is assured with an oxide-free electrode, and exhibits very large cur-
rents [64].

CONCLUSION

The goal of Aviram-Ratner rectification through an oriented D+-?-A- mono-
layer has been achieved, using either oxide-covered Al electrodes [42] or, now, Au
electrodes [64]. Much exciting work lies ahead, as we make measured progress
towards unimolecular electronics as a practical reality in the 21st century. 
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